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Summary. Many-body perturbation theory is derived for chemical bonds. Paired 
quasiparticles represent the bonds. Products of the paired quasiparticles define a 
model Bardeen-Cooper-Schrieffer function. The pairing force is added as a 
model interaction to the self-consistent problem. The starting model is based on 
valency and adiabatic symmetry correlation. Symmetries are enforced by the 
model Hamiltonian. Perturbative corrections are expressed as ordinary Feynman 
diagrams. The number of diagrams needed is the same as for particle-hole theory. 
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1. Introduction 

Perturbation theory is an approximation strategy based on the belief that 
differences between solväble models of physical systems and real physical systems 
are small and continuous. It is formulated as an infinite series of powers of these 
differences. A finite number of terms may yield an excellent approximation, but 
it cannot necessarily be applied systematically to arbitrary accuracy. The most that 
can be asked of applications is that the perturbative series converges. 

Perturbation theory for many-body systems yields an infinite expansion in 
the many-particle interaction. Unfortunately, in most real many-particle systems, 
the interaction between particles is not small. The Fermi energy, the interaction 
potential, the range of the interaction and the particle density are all of order 
unity in atomic units. There is not a convenient small parameter with which to 
develop a perturbation theory as an expansion in this parameter. 

* This work was supported in part by the U.S. Department of the Navy, Space and Naval Warfare 
Systems Command under Contract N00039-89-C-0001, and in part by NATO Research Grant 1861. 
It was presented, in part, at the A.C. Wahl Memorial Session, Molecular Spectroscopy Symposium, 
Columbus, Ohio, 1984; and Midwest Theoretical Chemistry Conference, Milwaukee, Wisconsin, 1985. 
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Quantized many-body systems may be described with quasiparticles and 
elementary excitations which interact weakly compared to bare particles and 
fields. Model solutions show how one passes from strong basic interactions 
between bare particles to weak residual interactions between quasiparticles [ 1, pp 
2-3]. In this way, many-body problems have been successfully dealt with by 
replacing the actual system with a perturbative approach that uses an appropri- 
ate system of quasiparticles, and it is believed that this approach at least applies 
to low-lying states [2, p 2]. 

A reasonable system of quasiparticles to use as a starting point is one which 
gives a realistic single-particle description. A unified theory has developed which 
is formulated as a simple (but nontrivial) extension of ordinary nonrelativistic 
one-particle quantum theory [3, p vii], called many-body perturbation theory 
(MBPT). The single-particle levels make up a physieal vacuum. Interactions 
occur relative to this vacuum and are represented by nonredundant scattering 
diagrams known as Feynman diagrams (FD). FD constitute an exact order-by- 
order series expansion for the many-body system. Up to any order, and relative 
to the physical vacuum, the sum of all FD corresponding to this order-by-order 
series scales correctly against extensive parameters of the system. 

Model building is at the logical tore of applications [4, p 5]. Model building in 
small systems is not particularly difficult: Unless the starting point is chosen with 
ù deliberate stupidity", as for example with the wrong symmetry, "almost any 
starting point can be moved in the general direction of reality by judicious 
improvement" [4, p 125]. This is supported by experience with variational 
methods and low-lying electronic states of most atoms and molecules. It is also 
supported by MBPT when applied to appropriate problems. A point of confu- 
sion arises because sometimes starting models that break symmetry are used for 
applications of MBPT, and these appear to fall in the category of deliberate 
stupidity. 

Nevertheless, it is often convenient to choose a starting model for MBPT 
which breaks one or more symmetries [5, p 429]. Consequënces depend on the 
symmetry which is violated. For example, translational symmetry is usually 
broken without observable consequences in finite problems. Symmetries such as 
particle-number or angular momentum taust usually be maintained. There are 
general methods for enforcing needed symmetries [6, Chaps. 10 and 11], [5, 
Chap. 8]. Perturbative corrections will not restore a broken symmetry unless an 
appropriate infinite number of  FD is summed [5, p 431]. 

The full apparatus of MBPT is applicable for studies of Fermi liquids [4, p 
107]. Two general classes of single-particle starting models are available: normal 
and superfluid. Normal models are those with localized quasiparticle interactions 
[7, p 87]. Hartree-Fock (HF) theory is a normal model [5, Sect. 10.3]. The 
physical vacuum is a determinant and quasiparticles are called particles and 
holes [8, Sect. 11.3]. HF effective potentials are sums of direct (Hartree) and 
exchange (Fock) potentials. The internal propagators of the FD describe parti- 
cles and holes. When a HF starting model is realistic and appropriate, MBPT is 
capable of describing the main features of electron correlation in finite systems 
[8, p 282]. 

Superfluid models are those with bound states connecting two particles or 
two holes [7, p 111]. Particle-hole levels become fractionally occupied. The model 
interactions which describe the bound states are called pairing interactions. The 
model physical vacuum is a Bardeen-Cooper-Schrieffer (BCS) function [7, Eq. 
(7-14)]. Effective potentials or mean fields for superfluids are sums of Hartree, 
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Fock and pairing potentials. The internal propagators of the FD describe 
quasiparticles which are uncoupled relative to the HF and paifing potentials. 
Propagators of this type can lead to double counting -counting some FD two 
times, always a danger in diagram garnes [4, p 124]. 

Single-determinantal or normal starting models of chemical bonds almost 
always break symmetry. The true ground state cannot be connected adiabatically 
to a single determinant. If proper symmetry is not included in the model, angular 
momentum may not be conserved or incorrect charges may be assigned to 
fragments. MBPT can diverge for certain ranges of parameters. However, 
inclusion of proper symmetry in the normal starting model is straightforward [9]. 

Chemical bonds mix particle levels with hole levels at bond distances where 
they are degenerate or nearly degenerate. This mixing can be described by 
superfluid starting models [10-13]. Levels to be mixed may be identified with 
valency models and adiabatic symmetry correlation diagrams. The BCS function 
and pairing interactions are set up for the degenerate levels. Hartree and 
exchange potentials and the model pairing potential define the self-consistent 
problem. In the language of diagram summation, the infinite self-energy summa- 
tion for the paifing interaction includes symmetries broken by the normal 
starting model. Lipkin's method [14] is used to include symmetries broken by the 
BCS function. Particle-number [10] or angular momentum [15] symmetries may 
be included. 

The general model is called BCSLN [16]. BCS labels the self-consistent 
vacuum and L refers to Lipkin. N is a reference to Nogami for the method used 
to include particle-number conservation [17]. Specific models are called BCSLN- 
M [18]. M labels the model valency and adiabatic correlation diagram used to 
include symmetry. For example, BCSLN-HL is the superfluid starfing point for 
the self-consistent Heitler-London model. 

In the present paper, details of the BCSLN formalism are given. Section 2 
describes new aspects of the perturbative method. Secfion 3 translates these ideas 
into diagrammatic form. Section 4 provides a conclusion. 

Numerical applicafions of the BCSLN scheme have been presented in a 
previous letter [16], which is Part I of this series. In that paper, BCSLN has been 
used to compute binding-energy curves for five diatomic reactions: 

H2 (X1Z + ) ~ 2H(2S)" 

LiH(X1S +) ~ Li(:S) + H(2S) 

FH(XlZ +) --* F(2p) + H(2S) ». (1) 

F2(X1Z + ) ~ 2F(2p) 

N2(XiÆ +) ~ 2N(4S) 

Each calculation starts with the simplest model which maintains the right 
symmetries (BCSLN-HL). Each starting bond mixes one particle level with one 
hole level. Most BCS functions are sums of four determinants for each bond and 
model Hamiltonians have two (three) parameters for single (multiple) bonds. 
The additional parameter for the multiple bond provides angular momentum 
symmetry broken by the Heitler-London model. Satisfactory results are found 
by third order. F 2 with six lone pairs and N 2 with a triple bond are stfingent tests 
of computational methods. The conclusion is that MBPT which starts from 
valency models which maintain correct symmetries can solve difficult molecular 
problems. 



4 T . E .  S o r e n s e n  et  al. 

2. Perturbative method 

2.1. Special  quasiparticles 

The special Bogoliubov-Valatin (B-V)  transformation [6, Eq. (7.12)] mixes 
particles and holes to yield second-quantized solutions for the pairing interac- 
tion: 

A ^ A-~ 
Ot k = u k a  k - -  Vkafc ] 
^ ^ ^ + ~ k > O  and / c = - k a r e p a i r e d  (2) 
Ot~ -= U k a  ~ + t ) ka  k J 

».-t- ^ 
where Uk, Vk are expansion coefficients and ak and ak are creation and annihila- 
tion operators, respectively. The B - V  transformation preserves anticommutation 
relations and defines a physical vacuum [6, Eq. (6.66)]: 

&kl - - )  = 0, for all k. (3) 

Coupled quasiparticles are used to set up the starting model. They are defined by 
a particular special transformation and will be called special quasiparticles. For 
most chemical bonds, k has spin opposite to k. Spin-pairing is used in this paper. 
Other 1-particle quantum numbers such as linear momentum or orbital or total 
angular momentum may be paired. 

The annihilation operators äk are model canonical operators. They satisfy 
anticommutation relations and annihilate the bare vacuum I ): 

äk] ) = 0 ,  for al lk.  (4) 

The 1-particle states Ók associated with the äk are expansion coefficients for the 
field operator: 

fr(x) = Y~ Ok(x)a»  (5) 

The model canonical representation must be defined so that the 1-particle 
density matrix is diagonalized and the pairing matrix (pairing tensor) has 
eanon ica l form with respect to the physical vacuum [6, p 248]. Conditions may be 
expressed with special transformation coefficients [ 19, Eq. (11.54)]: 

( - I ä +  ä, I --  ) = 6k' v2,  density matrix ) 
( - -  ~+,~+ ) .  (6) 

"k  "~ ] -- ) = ( -- [ä~äk ] -- ) = &,tUkVk = -- 6kTUtVl, pairing matrix 

The pairing matrix measures particle-hole mixing. Uk (Vk) measures the degree to 
which q5 k is empty (filled) in the physical vacuum. The normalization condition 
is: 

u 2 + v 2 = 1. (7) 

Conservation of  average particle-number no in the physical vacuum is expressed 
by the sum of 1-particle density-matrix elements: 

v]~ = no. (8) 
k 
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2.1.1. Model pairs and core levels. Model pairs are starting models for chemical 
bonds. Core levels are nonbonded levels. To set up the models, canonical labels 
are assigned to subsets F" (filled levels), P' (paired levels) and E' (empty levels). 

F' = F u f f ;  F= - F =  {q >O:v2q= l} } 
= 2 1} . P ' = P u f f ;  P = - f f  {q>O'O<~vq<~ (9) 

= ~ - - 0 }  E ' = E u Ë ;  E = - Ë  {q ~'O:Uq 

Primed subsets count spin-up and spin-down. Barred (unbarred) subsets count 
spin-down (spin-up). 

F'  (E') is a subset of labels which map one-to-one onto hole (particle) labels 
of the single-determinantal (normal) problem. F describes the model tore: 

g I]  «,el= I]  a,+*+ = " " aT. (10) 
i ~ F  i ~ F  

The subset of paired labels P is covered by pairs of subsets h, and p• whose 
labels map one-to-one onto subsets of hole (hg) and particle (p~) labels of the 
normal problem: 

P = U {h«up,}. (11) 

For each value of I, members of h• and PI label particles and holes mixed by the 
starting model for bond L This defines a model pair: 

,~h, \ v,  I o~, \Tl 
There is a conservation condition for the average particle-number assigned to 
each model pair: 

2 n•,0 ( 1 3 )  

i ~ h  I a ~ p  I 

Distinct model pairs are separated: 

h«c~hj=plc~ps=~, for Ml~)l~s. (14) 

The labels of Eqs. (9) and (11) are set up once-for-all. 

Unperturbedfunction. The unperturbed function is generated by the product of 
model core and model pair operators: 

i - )  =~i1~11 ) (15) 
I 

[ - )  is a model canonical BCS function. It is also a model physical vacuum 
which satisfies the annihilafion condition (3). It is assumed that I - )  satisfies a 
variational principle so that there is no additional loss of generality asso¢iated 
with restriction of Eqs. (10) and (12) to binary products o f  quasipartide 
operators with barred and unbarred indices [6, Sect. 7.2.1]. 

Unperturbed function for two quasiparticles [10]. Two special quasiparticles are 
paired to describe the Heitler-London model of a bond. Suppose the hole and 
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particle mixed by the bond are labelled by 1 and 2, respectively. Quasiparticles 
are also labelled by 1 and 2: 

h = l ;  p = 2 ;  P = { 1 , 2 } .  (16) 

The special tränsformation is: 

Œ1 = U l ä l  - -  /')1 ä~  I- 1~2 = U2ä2 - -  V2ä-ff'~ 
(17) 

&~ = Uläi + Vlä + &~ = u2ä~ + v2ä~.J " 

The condition for average particle-number conservation is: 

v 2+v~ = 1. (18) 

The BCS function is a sum of four determinants: 

] - )  ulu2lO)+vlv214)-ff(vl ^~-^+ ^+^+ = u 2 a f a  i - + - u l v 2 a  2 a~  ) l  ) .  (19) 

I0) and 14) are determinantal wave functions for zero and four quasiparticles, 
respectively: 

I 0)--I ), 14) ^~-^+^+ = a f  a i a2' ä+[ ). (20) 

Conditions are needed before the remaining terms can be related to a specific 
wave function. 

Suppose the exact model wave function for the ground state is: 
. ~  , ^ +  ^ +  äy = 

1 2 ) = (  t . lla l a ~  -IC21ä + )1 ), C ~ + C  2 1. (21) 

A model BCS function may be defined by two conditions on the special 
transformation coefficients: 

v1=u2=[[Cl[/(IC11+[C21)]1/2; Ul=-V2=[IC21/([CII+IC2[)] 1/2. (22) 

This model BCS function is equivalent to the exact model wave function for the 
ground state: 

I - >  = ( Ic l l  + Ic2[)IEIc~l[c21(Io>-[4)) + 12)]. (23) 

2.2. Model Hamiltonian and L operators 

The general formula for the model Hamiltonian HL is: 

/-IL =/-I  --f0 --f l  --f2- (24) 

/ t  is the ordinary Hamiltonian and the ip are normally ordered p-body model 
operators caUed L operators (for Lipkin). The role of L operators is to enforce 
desired symmetries, usually with Lipkin's method [14]. Normal ordering is 
defined with respect to the BCS function [19, Sect. 11.4]. It is denoted by placing 
strings of operators between colons. 

2.2. I. L operators for the Nogami-type Hamiltonian [10], [18]. The Nogami-type 
model Hamiltonian is a quadratic expansion in the number operator: 

/~L =/-I  - 2a(Æ - no) - ½22(Æ - no) 2. (25) 

]V is the number operator for paired levels: 

]V = ~ ä + ä,. (26) 
i~P" 
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The 2p are parameters whose values are determined to enforce the right sym- 
metries. 22 (21) is chosen so that the model energy (model particle-number) has 
the desired value. Wick's theorem yields the L operators: 

fo = 22 ~ UkVk (27) 
k~P" 

• ^ +  ^ . 1 . ^+ ^+.  ] ' )  fl = 2 : Æ : -  Z [22v~ .ak ak.--a22UkVk( .ak a£.  + :ä£äk:) 
k~e" ~ß (28) 

1 
2 = 2 1  "-[-222 

J~ = ½22 :ü2: (29) 

2 is the vestige of the chemical potential. It satisfies a gap equation and may 
be used to fix the model particle-number. In this case, 21 is determined indirectly. 

Parameters for  two quasiparticles. Expressions for parameters are derived from 
Lipkin's degeneracy conditions. {1 } 

= 22 = ~(E4 --  + Eo) (30)  en = <n IRin> 21 ~(E4 - -  Eo), 2E2 
<-I~LI--> =E2 

In> labels components of the model BCS function in Eq. (23). 
Essentially these equations were used for Heitler-London models for the 

single bonds of Eq. (1) [20]. E2 is replaced by the self-consistent Heitler-London 
energy. E0 (E4) is replaced by the energy of the determinant with two fewer 
(extra) quasiparticles. 

2.3. One-body model Hamiltonian and uncoupled quasiparticles 

The one-body model Hamiltonian is a Hartree-Fock-Bogoliubov-type Hamil- 
tonian set up in the canonical basis. 

= vkt:ak a l : - - - ~ . , k  "t ---~-.akat:  +E(1) . (31) 

E < l )  = < - - I H L I - >  

E (1) is the model energy (energy through first order), v is the model self-consis- 
tent energy and # is the model pairing potential. Each is a sum of contributions 
from the ordinary Hamiltonian (denoted by superscript (0)) and the one-body L 
operator (denoted by tildes except for the vestige of the chemical potential 2): 

vkl = ekt + gkl #kl = #~02 + fikt 

Ek, = E~ °) -- 2ger gkz = g~O) + g,k, 

g~O) = ~ (v~O)ml m __ v~O)mml)l)2 # (0l) = 2 V~°)fftmlUml)m 
m m 

äk, = Ôk» for kl e P" 6kt = gkl = fik, = O, 

V~°~mù represents the 2-electron interaction: 

O ) = e 2  f f d x 2  ~)*(xl)~*(X2)~)m(xl)(pn(x2) V~tmù dxl 
?'12 

for kl q~ P'  

». (32) 

= [~kff)m I ff)lff)n]. (33)  
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The integration includes spin summation, e is the electronic charge and rlz is the 
distance between the electrons. 

e (°) is the sum of the matrix elements of the 1-electron kinetic energy and 
the electron-nucleus attraction energy. It is a Hückel-type energy, g(0) is the 
matrix element of a generalized HF effective potential (generalized direct and 
exchange interactions). #(o» mixes particle and hole levels to form starting 
models for chemical bonds. 

There is more or less a division of labor, v must order the levels correctly 
and # must maintain correct symmetries. The right starting models of bonds 
break the right particle-hole symmetries and maintain the right total symmetries 
of the problem. 

Partition of the one-body L operator for two quasiparticles governed by the 
Nogami-type Hamiltonian. The model BCS function of Eq. (23) for two quasi- 
particles does not conserve particle-number. Enforcement of particle- 
number conservation yields the following partition of the one-body L operator 
[10, 18]. 

2 = ½(3E4 - 2E2 - E0) 
/ 

gkl ~ 2 = -(E4 - 2E2 + Eo)6ktvk ~ .  (34) 
/ 

fik, 1~(E4 - 2E2 + Eo)6k, vkuk.J 

2.3. I. Unperturbed Hamiltonian. The one-body model Hamiltonian is diagonal- 
ized in the energy representation: 

~ILo = 2 Ek~ + ~Æ "-k E (1). (35) 
k 

To first order, the quasiparticles ~k are uncoupled and satisfy Heisenberg 
equations of motion: 

d ^  
i dt ~k(t) = Ek [Ik(t). (36) 

These are the unperturbed equations of motion. The Ek will make up the energy 
denominators of MBPT. 

The transformation from the model canonical representation äk to the 
energy representation Ph is a general B-V transformation. It may be expressed 
as two consecutive steps [6, Sect. 7.2.1]. The first step is the special B-V 
transformation and the representation of the one-body model Hamiltonian in 
the special basis. 

HLo = ~ tckt~~- &l + E(1) 

( k l '~ k 1 . (37) 

This is the general form when 1 - )  satisfies a variational condition. The second 
step is a unitary transformation. The transformation matrix is made up of the 
eigenvectors of the one-body model Hamiltonian in the special basis. 

2 ]£kl])lm = ])kmEm' ~k = 2 ~ ~mkŒm" (38) 
1 m 
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The uncoupled quasiparticles satisfy fundamental anticommutation relations 
and can be used to generate the physical vacuum: (~ )~~~(1~ ) 

I - > =  Im[ 2 ~is~it~s~t- ~ ~kq~kr~q~F i> (39) 
i~F s 0 t > 0  q 0 r > 0  

Bq I - )  = 0, all q. (40) 

It is convenient to extend Eqs. (9) and (11) to the uncoupled quasiparticles. 
This is done once-for-all, usually when 17,ùm ] ~ 1. 

2.4. Unperturbed excited states 

Excited states of the model physical vacuum are in one-to-one correspondence 
with excited states of the normal ground state [21, Sect. 7.4.5]. 

~äl  ]~ä2 " ~a+n ~k~ ~kq-2 " A+ A ^ .. " ' [~k, l - ) .  (41) 

ai (kz-) is restricted to quasiparticle labels which are empty (filled) in the normal 
state. 

2.4.1. Unperturbed excited states for two quasiparticles. Suppose that the quasi- 
particle operators ~ and 11 are identical. A complete set of unperturbed excited 
states includes stares such as: 

A A_ 
^4- ^d- a1 «i I - )  = ( - v ,  +Ulä;-ä+)~2«~ [ ) (42) 

/)2 
A ^ 

A + A +  A +  
« i«5  I - )  = ( - / ) 2 +  U2«z ä+) al«i l  ) (43) 

Vl 
A +  A + A +  A + X A +  A + A +  A + X  

~1 ~i ~2 ~~ - - ) = ( - - v l q - u l a l  a1 )(--/)2q-u2a 2 a~ )1 ) (44) 

«+&+l-->=ä+ä+ I > (45) 

ä + ä { I - >  = ä+ä+[  > (46) 
A ^ 

ä~-] _ ) = ä+ a2a5 I ) (47) 
/)2 

^+-+ä~ _ at, «z I > = ä { ( - / ) z + u 2 ä ~ ä + ) l  )" (48) 
Spurious states occur whenever the physical vacuum violates conservation 

principles [19]. Two of the three states of Eqs. (42)-(44) are spurious. It will be 
seen in Sect. 2.4.2 that spurious states such as these are excluded in the present 
method. 

2.4.2. Allowed excited statesfor two quasiparticles. Level 1 (2) is filled (empty) in 
the normal ground state. The labels for Eq. (41) are 

k2kl=l= ~ a2al~~}. (49) 

Seven excited states of the two quasiparticle problem are defined in Eqs. 
(42)-(48). Others may be generated in the same way up to a total of fifteen. 
Suppose for simplicity that a and k have different symmetry properties. This 
leaves a total of seven excited states. If the one-to-one correspondence of Eq. 
(41) is enforced, only the excited state defined in Eq. (44) survives. This excited 
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state is unwanted in MBPT because all two-level correlation is included in the 
unperturbed energy. The conclusion is that none of the excited states are 
allowed. No spurious states occur. 

2.5. Perturbative interactions 

The perturbation I ?o) is the difference between the normally ordered 2-electron 
interaction and the two-body L operator: 

= v (°) - A  J (50) 

1 0) ^ + ~(o) ~ ~ V~,mù"+ ^ ^ " (51t = . a  k a t anam 
klmn 

Matrix elements for the two-body L operator represented in the canonical basis: 

• + + 
B;ktmn.ak at anam (52) 

klrnn ~ P" 

For example, matrix elements for the Nogami-type Hamiltonian can be deduced 
from Eq. (29)" 

f2;kt,ùù = 226km6tn" (53) 

Matrix elements for the perturbation may be represented in the canonical basis: 

Vk«mnIT(1) : --klmn17(01 -- f2;klmn', f2;Ælmn = 0, for klmn 6 P'. (54) 

There are symmetry requirements for Coulomb and electron-phonon interactions 
[22, Eq. (7.34a)]: 

11 V~lrnn ~~- VrTagkIp(1) - -  - -  v (  lffttlcn = V kùml'Æ( l ) _. ( 5 5 )  

2.5.1. Interactions among uncoupled quasiparticles. ~'o) which satisfy the symme- 
try requirements of Eq. (55) can be expanded with Pauli matrices ~3 [22, Sect. 
7-2]: 

=1 1 )  . * +  * * +  * . 
~'(1) 2 E V ~ l m n . a  k "c3amat "c3an. (56) 

klmn > 0 

The äk are spinor operators: 

ak'+ = (ä+,  ä~), k > 0. (57) 

The transformation from the äk to the ~q may be written a s :  

äÆ = (uk + vkir2) ~ ])kq~q (58) 
q > 0  

where x2 is a Pauli matrix. The transformed perturbation for BCSLN in the 
energy representation is: 

qrst > 0 

Matrix elements of  (z(o~. The first term on the right-hand-side of Eq.  (59) 
represents I?(o). The spinor matrix Fqs is a sum Of two charge distributions 
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Aqs(X, x') and ~"]qs(X, Xt), each multiplied times a Pauli matrix: 

rqs(X , x ' )  = Aqs(X , x')'c 3 - t "  ~-~qs(X, X / ) ' ~ I  . (60) 

The charge distributions can be expanded with 1-particle functions: 

Aqs (x, x ") = t* (X)ts (x ') - 2 * (X)2s (x I) "~ (61) 
~-~qs(X, X t) = t*(X)2s(X" ) + 2 *(X)ts(x )J  

tq = ~ ~kqUk~)k I~q = Zo~kqVk~)k ~ 
k>0 ~ > ~  f o r q > 0 .  (62) 

k > 0  k > 0  . )  

The matrix elements needed to represent ~(o) can be written with Mulliken's 
notation for 2-electron interactions introduced in Eq. (33): 

[~-~qs[~'~rt] =[tq)~«[tr2t] +[tq2s[2rtt] +[2qtsltr2t] -[-[~qts[~rtt] (63) 

[(2qslArt]=[tq2sltrt,] -[tq2sl)~r2t] +[2qt~ltrt«] - [2qts [2r)~,] (64) 

[AqslA~t]=[tqt~ltrtt] --[tqtsl2~2t] - -[2qLItr t t]  "~-[l~ql~sl2rl~t]. (65) 

tq ()Cq) is particle-like (hole-like) when almost empty (filled): 

t q ~ q~q(partiele) t 
~q---~~q(hole) ~ lu~l and I~~1 = 1 or 0 for all k. (66) 

tq and 2q are equivalent when the pairing interaction js maximal: 

tq---->-~-~q, lu~l=i~~r=½ fo ra l lk .  (67) 

Equivalence means particles and holes are completely mixed. 

Matrix elements o f t .  The second term on the right-hand-side of Eq. (59) is the 
representation of f2: 

/ / / . ! ! 
(Fqs>=(Aqs) 'c3"~-(Oqs>'c1,  ( A q s ) = ( ( 2 q s ) = O  , for qs¢P. (68) 

Three products of model matrix elements are needed to represent ~ .  

(~-2qs)(O'r,); (A'qs)(O'rt)', (A'q~)(A'r,). (69) 

Nogami-type Hamiltonian. Matrix elements follow from Eq. (53). 

(~'~tqs) = ( t q l2 s )  -t- ()~qlt~); (A'qs)  = ( tq l t s )  -- (2ql)~s). (70) 

(a ]b) is ordinary bra-ket notation for inner products. Both matrix elements 
vanish in the particle-hole limit. In the limit of maximal pairing, (Aq~) vanishes 
and (12qs) becomes -b(~qs" 

<~qs>=</«s>=o, Iù~1 and I~~l=lorO forall (71) 
/ g q  t <~'~qs> = -}- s, < A q s > = O ,  lu~l=l»~l=½, f o r a l m  

3. Diagrammaüc method 

The canonical spinor representation has the form required to make the Feyn- 
man-Dyson perturbation series rules work for one- and two-body operators [22, 
p 174]. In the energy representation, spinor propagators assign charge distribu- 
tions and model matrix elements to two scattering vertices. Vertices connected by 
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interaction lines are diagrammatic representatives of the perturbation. Interac- 
tions between quasiparticles reduce to differences between two terms. One is an 
integral over a binary product of charge distributions and the other is one of the 
binary products for the two-body L operator (Eq. (69)). 

3.1. Propagator lines 

The time-dependent spinor-matrix propagator is defined by: 

Gq«a(t) = i(-IT~q~(t)~~(O)l-) for c, fl = 1, 2 (72) 

where T is Wick's time-ordering operator and the components are: 

Bql =~q ~q2 ~--- ~q-" (73) 

Spin-down states are chosen to move backward in time. Spin-up propagation is 
represented by: 

o«,:/(; 00) ~74, 
and spin-down propagation by: 

o«,= ,(0 ° 0) ~7», 
The propagators are essentially idempotent and satisfy projection relations. 

G( T)G(~) -- iG( T); G( ~)G($) -- - iG( ~,)~. (76) 
G(~)G($) = G(+)G(T) = 0 ) 

3.2. Scattering vertices 

Propagators satisfy multiplication rules: 

G(~)%G($) = G(T)ZlG(T) = G($)zlG($) =0. (77) 

The vertices Fqs and (Fqs) can be replaced by the pairs of vertices f2qs'q, Aqs'C3 
and (f2qs)Zl, (A'qs)%, respectively: 

G( T)rq, G( J,) = G( T)Oqs ~, G($)] 
G( ~)FqsG( ~) = G( ~)A«s ~3G( T) ~ (78) 
G($)rq, G($) =G(+)A~sz, G($)J 

G(~) <r'« >G($) = G(I") (~'« >.1 G(I) 
G(T) (F'qs)G(T) = G(T) (A ~s )% G(T) (79) 
G(~) (Fq,)G(~,) =G(,[)(Aq, )%G($). 

This is represented diagrammatically on Fig. 1. Dark (light) vertices are 
Zl-vertices (%-vertices), and are associated with the label O(A). Unique interac- 
tions are identified by connecting scattering vertices with interaction lines 
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q~ 

G(T)aq~r3G(1) or 

G(T)<a~~)T3G(1) 

Fig. 1. Scattering vertices 

7" 

G(~)A«rr3G(T ) or 

G(T)<A;r)r3G(T) 

r 

G(i)A«rrzG(t) or 

( . . . .  ) in all possible ways: 

! . . . .  • -, (t2qr IQs,) --[~2qr If2«] - (~'~tqr)(ff~st ) 1 

. . . .  o ~ (Oqr last) = [~'~qr last]  - (~'-~'qr >(A~t  5~. 
. . . . .  --.4. (Aqr  [Ast ) = [Aqr lAst  ] - •A/qr >•Atst > j  

3.3. Closed  loops 

(80) 

Closed loops are trajectories which begin and end on the same vertex. In a theory 
where spin-components are degenerate, one expects closed loops such as those 
shown on Fig. 2 to be equivalent. This will now be demonstrated. Every closed 
loop has an even number of dark vertices and some number of  light vertices. 
Starting the loop with a dark vertex, those of current interest may be represented 
by the matrix L: 

L = "c1G(~)['c3G(~)]m~IG(~)['¢3G(~)]n'clG(~) . . .  [~3G(~)] p (81) 

where m, n . . . . .  p are integers. Each ~, G is associated with a dark vertex, and 
each ~3 G with a light vertex. The trace of L is needed to show that no minus 
signs attach to spin-up or spin-down propagation directions. It follows from the 
relations: 

• 3G(T)=œT); ~ 3 Q $ ) = - G ( $ )  (82) 
and 

G(~')n=i n 1G(]'); G ( , ~ ) ' = ( - i ) ~ - I G ( , ~ )  (83) 

that L always reduces to the form: 

L = im+n+'"+P'~l('~J(~)'¢lG(+ ) " ' "  '~IG(~). (84) 

Since L by definition has an even number of dark vertices, and since each pair 
of dark vertices contributes an idempotent matrix via: 

• IG(T)~IG($) = (~ ~) (85) 

Fig. 2. Equivalent spin propagation loops 
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one obtains in all cases: 

L=in+m+'"+P(O 0 01), traceL=i n+m++p (86) 

The same signs attach to both spin components, and thus closed loops such as 
those shown above are equivalent. Each closed fermion loop contributes a 
minus sign for the reasons established in ordinary many-body theory [21, 
Appendix 4.A.2]. No minus signs arise from non-causal propagation lines. 

3.4. Normal diagrams 

The excited-state restrictions of Sect. 2.4 are incorporated with the subset of 
FD described in this section. The labelling scheme is called normal to emphasize 
one-to-one correspondence with the normal starting model. 

Normal vertices are in one-to-one correspondence with those of particle-hole 
theory. At each dark normal vertex, one quasiparticle label must map to a hole 
label and the other to a particle label. At each light normal vertex, both 
quasiparticle labels must map to hole labels or both to particle labels. 

Normal closed loops are closed loops whose vertices are all normal vertices. 
Their labels are in one-to-one correspondence with labels for closed loops of 
the normal problem. Labels that map to particle-labels (hole-labels) of the 
normal problem are assigned to up-arrows (down-arrows) of normal closed 
loops. 

Normal diagrams are diagrams made up of interaction lines, normal vertices, 
and normal closed loops. The number of normal diagrams is the same as the 
number of diagrams for particle-hole theory. The formulae for normal FD are 
essentially the same as for particle-hole theory. 

3.4.1. Energy diagrams. Rules for Goldstone diagrams 

(1) For a given order N, draw N interaction lines. 

(2) Supply each interaction line with a normal vertex at each end, and draw 
directed lines, one line into and one line out of each vertex. At each dark 
vertex, one line taust map to a hole line (down-arrow), and the other to a 
particle line (up-arrow). At each light vertex, both lines must map to hole 
lines or both to particle lines. 

(3) Label each directed line with a quasiparticle label. Use i , j ,k . . . . .  
(a, b, c . . . . .  ) for quasiparticle labels which map to hole (particle) labels of 
the normal state. 

(4) Draw a dotted horizontal line between each successive pair of interaction 
lines. 

(5) Evaluate diagrams by the dictionary of Table 1. 

Brandow diagrams. Goldstone diagrams treat direct and exchange interactions 
separately. Brandow diagrams [23, Appendix B] combine direct and exchange 
elements into a single antisymmetrized interaction. Brandow diagrams for the 
present theory combine interactions into a single interaction which is not 
necessarily an antisymmetrization. The rules may be expressed as modifications 
of those previously given. 
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Table 1. Diagram dictionary for ground-state energy (Goldstone diagrams) 
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Diagram element Factor 

Dotted line: 

-1/(sum of Eq'S for all lines crossing dotted line) 

Interactions: 

q r s ~ (aqr I Ost) 

8 

q r ~ (K2«rlA~,) 

q 8 

r t 

Each closed loop 

Each completely symmetric diagram 

Each quasiparticle label q 

(Aqr lA,c) 

-1  
L 
2 

Zq 

Rules for Brandow diagrams 

(1) Draw just one diagram from the set of all those obtained from each other 
when direct interactions are replaced by exchange interactions, or vice 
versa. 

(2) Include a factor of ½ for each equivalent pair of lines. Two lines form an 
equivalent pair if they (a) both begin at the same interaction, (b) both end 
at the same interaction, and (c) both go in the same direction. 

(3) Apart from the entries for interactions and the rule for completely symmet- 
ric diagrams, evaluate the diagrams by the dictionary of Table 1. The 
interaction elements are evaluated by the dictionary of Table 2. The com- 
pletely symmetric diagrams are covered by the rule for equivalent pairs of  
lines. 

Second and third-order Brandow diagrams. The second-order Brandow diagram is 
shown on Fig. 3: 

D (2) = -- ~ (Oia]Ojb)[2(Oai[Obfl (Oaj[O»~)]. (87) 
ijab > 0 Diajb 
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Table 2. Dictionary for interaction elements of  Brandow diagrams 
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Element Factor 

(I 

3 
i a 

a b 
c 

a , b 
i a b 

c 

J 

a z 
a 

3 

All others 

} 
(#~ù I#») - (Au IAùD 

(A«IAa») - (a, ,  I~j») 

(a,~,lA»c) - (gab, I A « )  

/ (ao, l&) - (ao~ lA,,) 

Antisymmetrized interactions 

Fig. 3. Second-order Brandow diagram 

The symmetric energy denominators are sums of the eigenvalues of Eq. (36) of 
the uncoupled quasiparticles: 

Dqrst = Eq + E,. + Es + Et. (88) 

Third-order Brandow diagrams are shown on Figs. 4 and 5. 

D(3) ( lp )  = ~ ,  (~ ia  [~'~jb) (~cil~'~dj) [2(At [Aba) _ (A~alAb«)] 
Üabcd > 0 D iajb D cidj 

D(»)(lh) = Z (O«il(2bj) ( Q ~ , b )  [2(A,k [Aj, ) _ (A,t[Ajk)] 
ijklab > 0 Daibj  Z"kalb (89) 

D(3)(rph) =2 E [2(~2bklO«i)--(Ob'la«~)] 
ijkabc > 0 DbkciDijac 

x {[2(..Q,c [.c2ja ) - (O~, I a»)](ao, I ~,~~) 
+ (akù I a»)(A:,, lA,+) + (o,« la+:)(A«b lA,v) } 
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lp 

rph 

lh Fig. 4. Third-order Brandow ladder diagrams 

Fig. 5. Third-order Brandow ring diagram 

The total third-order correction is: 

D (3) = DO>(lp) + D(3)(lh) + D(3)(rph). (90) 

3.5. Diagrammatic formula for total energy 

Correlation energy counted by E (1) must not be counted again by finite-order 
diagrams. For  example: 

E (2) 5 ~ E (1) -t- D (2) (91) 

because model FD are counted by E (l> and D (2). Overcount may be corrected up 
to the order of  the theory. 

3.5.1. Model scattering diagrams and normal energy. Model scattering diagrams 
are FD summed to all orders by the unperturbed energy. There are always 
self-energy summations. Each is associated with a model pair and is labelled by 
members of the two subsets h1 and p1 in a manner determined by the model. The 
total contribution from Kth-order model scattering diagrams is the sum of  
contributions from model pairs: 

D ~o)de, = Z D~o)del(I)" (92) 
I 

The first-order energy with model-included FD removed up to the order of  the 
perturbation theory is called the normal energy: 

N 

W (N) = E  (') -- ~ D~2del . (93) 
K = 2  

The total energy is the normal energy plus perturbative corrections: 
N 

E ( N ) =  w(N)'3f- E D(K)" (94) 
K = 2  

Equations (93) and (94) are diagrammatic equivalents of discarding the excited 
state of Eq. (44) discussed in Sect. 2.4.2. 
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Example: pair scattering. Pair scattering diagrams are model FD for paired 
quasiparticles. At least two propagator lines carry the same quasiparticle label 
between successive interaction lines [24, Eq. (15.41)]. Summation limits and 
ranges for the previous formulae must be modified. Summation limits undergo 
the replacements: 

i , j , . . .>O~i , j , . . .~h ,  r~. 
(95) a,b, >O~a,b,.  "ePz) 

Factors may be inserted in each term of the summations to convert Eqs. (87) and 
(89) to correlation-energy formulae for pair scattering. 

FD Factor Model pair FD~ 
/ 

D (2) [6ijfab ] D (ffa)ir(l) [ 

O(3)(Ip) [(~abfca~ij] D~32ir(,)(lp) ~. (96) 

D (3)(lh) [Oijgklgab ] D(3) t l ~ / Pai r ( I )  k hi [ 

D(3)(rph) [(~ij(~ikSab(~ac] D~)ir(I)(rph) J 
Example: exact scattering. Exact scattering counts all interactions among quasi- 
particles for a model pair. Summation limits in Eqs. (87) and (89) must be 
changed according to Eq. (95). No other changes are necessary. 

4. Conclusions 

A new diagrammatic MBPT is derived, namely BCSLN. The unperturbed 
problem is defined by a BCS function and modified Hamiltonian. There is no 
loss of accuracy arising from the violation of particle-number or other conserva- 
tion principles by the BCS function. 

The diagrams of the new method are in one-to-one correspondence with 
diagrams of particle-hole theory based on a single determinantal unperturbed 
function, and perturbative calculations with the new method require essentially 
the same amount of work as particle-hole MBPT. However, the new method is 
based on a more general unperturbed formulation and its diagrams are well- 
behaved. 

Generation of a perturbative expansion with BCSLN is accomplished with a 
valency model and adiabatic symmetry correlation diagrams. There is no formal 
expansion parameter in which to generate a perturbative expansion. Without an 
expans!on parameter there is freedom to write a variety of different exact 
expressions, each of which yields a different lowest-order approximation. 
BCSLN must be guided by physics and model calculations which include the 
relevant contributions to the mean field. 

Applications of BCSLN can be carried out with conventional quantum 
chemical software, and this was exploited in Paper I of this series. GVB [25] was 
used to compute orbitals, pairing coefficients, and parameters for the model 
Hamiltonian. A standard 4-index transformation was used to calculate matrix 
elements for charge distributions. With attention to signs, FD were computed 
with code from the Computer Physics library [26-28]. With this code and the 
basis sets described in Paper I of this series, the calculations of perturbative 
corrections through third order for F2 and N2 require about 1 min per point on 
an IBM 3090. 
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